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Abstract Molecular markers allow to estimate the

pairwise relatedness between the members of a breeding

pool when their selection history is no longer available or

has become too complex for a classical pedigree analysis.

The field of population genetics has several estimation

procedures at its disposal, but when the genotyped indi-

viduals are highly selected inbred lines, their application

is not warranted as the theoretical assumptions on which

these estimators were built, usually linkage equilibrium

between marker loci or even Hardy–Weinberg equilib-

rium, are not met. An alternative approach requires the

availability of a genotyped reference set of inbred lines,

which allows to correct the observed marker similarities

for their inherent upward bias when used as a coancestry

measure. However, this approach does not guarantee that

the resulting coancestry matrix is at least positive semi-

definite (psd), a necessary condition for its use as a

covariance matrix. In this paper we present the weighted

alikeness in state (WAIS) estimator. This marker-based

coancestry estimator is compared to several other com-

monly applied relatedness estimators under realistic

hybrid breeding conditions in a number of simulations.

We also fit a linear mixed model to phenotypical data

from a commercial maize breeding programme and

compare the likelihood of the different variance struc-

tures. WAIS is shown to be psd which makes it suitable

for modelling the covariance between genetic components

in linear mixed models involved in breeding value esti-

mation or association studies. Results indicate that it

generally produces a low root mean squared error under

different breeding circumstances and provides a fit to the

data that is comparable to that of several other marker-

based alternatives. Recommendations for each of the

examined coancestry measures are provided.

Introduction

The coefficient of coancestry (CoC) between two individ-

uals i and j is defined as the probability that at an allele

drawn from both i and j at the same locus is identical by

descent (ibd) from a recent common ancestor. This simi-

larity measure is frequently used for modelling the

covariance between the genetic background of plants

involved in breeding programmes (Panter and Allen 1995a,

b; Bernardo 1994, 1995, 1996a, b) or association studies

(Jannink et al. 2001; Yu et al. 2006). Piepho et al. (2008)

recapitulates the underlying quantitative genetic assump-

tions of incorporating a coancestry-based covariance

matrix in these models, such as gametic-phase equilibrium

of the base population and absence of epistasis, selection

and drift. These assumptions are rarely or never honoured

in a plant breeding context and even explicitly violated

when the genotypes under study represent a set of highly

selected inbred lines. However, in practice, despite the
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numerous deviations from quantitative genetic theory, the

CoC often results in an improved model fit compared to

alternative methods for structuring the covariance between

the genetic components of inbred lines.

If detailed pedigree information is available for all

genotypes under study, one can calculate the CoC by

means of the tabular method (Emik and Terrill 1949). The

founding fathers of this pedigree are assumed to be unre-

lated and therefore set the reference of a zero CoC. Besides

accurate pedigree information, the tabular method assumes

an equal contribution of both parents to each offspring. The

obtained estimators are therefore only valid when there is

no selection or genetic drift in the population at hand.

However, if inbred lines are obtained through iterative

cycles of inbreeding and selection, by doubling haploids or

the single seed descent method, the parental contributions

are expected to deviate from their theoretical expectations.

Molecular marker information allows to circumvent the

assumption-burdened pedigree-based estimator, as the

resulting allele identities reflect the unequal parental con-

tributions caused by the breeding process. However,

deducing the CoC from allele identities on marker loci

results in an upwardly biased estimator, because an alike-

ness in state (AIS) of alleles in different genotypes does not

guarantee a shared inheritance from a common ancestor

(Cox et al. 1985; Lynch 1988). Bernardo (1993) shows

how this bias can be reduced by taking into account the

observed marker similarities between unrelated inbred

lines. An alternative approach consists of using marker-

based estimation procedures from population genetics, like

the kinship coefficient of Loiselle et al. (1995) or the

maximum likelihood estimator (MLE) described by

Thompson (1975), to name but a few. These estimators

have their foundations in population genetics but since

none of the initial assumptions are met when the genotypes

at hand are selected inbred lines, they reduce to the same

level as Bernardo’s ad-hoc method.

Irrespective of the estimation procedure used, the

resulting pairwise CoC values are often arranged in a

symmetric relationship matrix A which is then used to

model the covariance structure between specific compo-

nents involved in a linear mixed model analysis of genetic

evaluation data. This matrix should therefore be at least

positive semi-definite (psd) which implies that all eigen-

values of the matrix are greater than or equal to zero, or

equivalently that

v0Av� 0; 8v 6¼ 0:

If we were to model the variance of a vector of random

additive genetic effects u as 2r2
gcaA (Lynch and Walsh

1998), A would have to be psd, as the variance of any linear

combination of the additive effects Var ðv0uÞ ¼ 2r2
gcav0Av

must be positive or 0. A marker-based CoC estimation

procedure should therefore guarantee that any derived

relationship matrix is psd. Unfortunately, most published

estimation procedures can result in a non-psd A matrix,

while for those who seem empirically psd, a formal proof

of this property has not been established. Trying to fit a

non-psd covariance structure in a linear mixed model is

however not without consequence. Most linear mixed

model packages use the psd property to decompose the

variance matrix of the model by means of a Cholesky

decomposition. If the variance matrix of the linear mixed

model is not psd, the linear mixed model package either

quits with an error message referring to a problem in the

initial likelihood calculation (SAS PROC MIXED,

Wombat) or gives a warning message and continues

the analysis (ASReml). In the latter case, convergence

problems of the REML algorithm are frequently observed

and the resulting BLUPs should be interpreted with caution

as the estimation procedure can now force certain BLUPs

to expand away from zero instead of shrinking them.

Several estimation procedures can possibly result in

estimated CoC values that are greater than 1 or smaller

than 0. From a sheer model fit perspective, a negative

covariance between certain genetic components might be

justifiable, but when a biological interpretation of the

estimated variance components or BLUPs according to

Stuber and Cockerham (1966) is needed, the CoC should

be a probability and thus bounded by zero and one. To

accommodate an interpretation of the CoC estimator

according to its original definition, Bernardo (1993) pro-

poses to truncate the out of bound values at the boundaries

of the parameter space. As a consequence, even if the used

CoC estimation procedure is proven to always generate a

psd relationship matrix, the possibility of a post-hoc trun-

cation of the out of bound values results in a loss of this

mathematical property.

If a non-psd coancestry matrix should arise for whatever

reason, it can always be bent towards the closest psd

matrix. The term matrix bending was first coined by Hayes

and Hill (1981) for describing a procedure which shrinks

the range of eigenvalues of a matrix involved in selection

index calculations. The authors indicate, rather as a side-

effect, that this procedure allows to make a non-psd,

genotypic or phenotypic variance matrix psd. More than

20 years later, Sørensen et al. (2002) used this procedure

for bending estimated CoC matrices and compared its

performance to two other procedures based on spectral

decomposition. Unfortunately, all three described proce-

dures allow to obtain CoC values outside the parameter

space. Henshall and Meyer (2002) published two programs

which focus on bending non-psd covariance matrices

which might arise in multi-trait genetic evaluations. The

iterative matrix bender described by Jorjani et al. (2003)

focuses on the same problem and allows to give different
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weights to each entry in the covariance matrix, depending

on its reliability. The described algorithm even allows to

incorporate the restrictions specific to correlation matrices

but these obviously differ from coancestry matrices.

The main objective of our research was to develop a new

marker-based CoC estimation procedure for specific use in

hybrid breeding programmes. This procedure should there-

fore allow for a mix of heterozygous and inbred genotypes.

All pairwise CoC values should be interpretable as a prob-

ability and therefore lie in the unit interval [0,1]. Any

resulting relationship matrix should be guaranteed to be psd

which avoids the need for any bending procedure. In the next

section we derive this new estimation procedure and give a

formal proof of its psd property. In the two following sec-

tions we compare its behaviour to other CoC estimation

procedures by means of simulations and an application to

actual maize breeding data. We conclude by presenting the

results of these calculations and a general discussion.

Materials and methods

WAIS

A codominant molecular fingerprint of a diploid genotype i

can be represented as an integer row vector xi. Each position

in this vector represents an allele at a certain locus that is

represented in the genotyped breeding pool. The vector

position is set to 2 if the matching allele is homozygous for

genotype i, 1 in case the allele is present at only one of the

two homologous chromosomes and 0 in case of absence. xi

therefore has length p ¼
Pl

k¼1 nk where l is the number of

genotyped loci and nk is the number of alleles observed in

the collection of genotypes at locus k. Using these vectors

we can calculate f AIS
ij between two genotypes i and j as

f AIS
ij ¼ 1

4l
xixj

0:

If we arrange the row vectors xi of length p for all m

genotyped individuals in an m 9 p matrix X we can

calculate the symmetric AIS matrix as

AAIS ¼ 1

4l
XX0:

AAIS can be shown to be at least psd (Gower 1971) as

v0AAISv ¼ 1

4l
v0XX0v ¼ 1

4l
ðX0vÞ0ðX0vÞ ¼ 1

4l

Xp

z¼1

u2
z � 0;

for all m-sized vectors v = 0 where (u1, u2,…, up) is the

transpose of the column vector X0v.

Despite being psd, AIS is upwardly biased and therefore

not the preferred similarity measure for linear mixed

modelling of breeding data. Therefore, we want to incorporate

a correction factor without loosing the psd property. To

calculate this correction factor, we start from a normal hybrid

breeding scenario which assumes that the inbred lines, for

which we want to estimate the pairwise relationships, all

belong to the same heterotic group. We also assume that we

have a complementary heterotic group of genotyped inbred

lines at our disposal. All inbred lines from the first heterotic

group are assumed to be completely unrelated to the lines

belonging to the second heterotic group. We are now able to

define several probabilities that are needed to introduce the

correction factor. Imagine we draw a random allele from

individuals i and j, at the same locus and both alleles ai and aj

turn out to be allele z. We define the conditional probability

xz for two random individuals as

xz ¼ Pðai¼
ibd

aj j ai ¼ z; aj ¼ zÞ

¼ Pðai ¼ z; aj ¼ zÞ � Pðai ¼ z; aj ¼ z; ai¼
6ibd

ajÞ
Pðai ¼ z; aj ¼ zÞ ; ð1Þ

where P(ai = z,aj = z) is the probability that the two

alleles, drawn from two random individuals i and j of the

same heterotic group at the locus to which z belongs, are

equal to z and therefore AIS. Pðai ¼ z; aj ¼ z; ai¼
6ibd

ajÞ is the

same probability but with the additional constraint that the

AIS is not caused by a shared inheritance from a nearby

ancestor (i.e. an ancestor that is still unrelated to all lines in

the complementary heterotic group). P(ai = z, aj = z) can

be estimated from the mðm� 1Þ=2 possible pairs of

genotyped members of the heterotic group as

Pðai ¼ z; aj ¼ zÞ ¼
Pm

i¼1

Pm
j [ i xði;zÞxðj;zÞ

2mðm� 1Þ ; ð2Þ

where x(i,z) and x(j,z) represent the corresponding entries

in matrix X for genotypes i and j and the column

corresponding to allele z. If we now assume that individual

i belongs to one heterotic group and j to another, we can

estimate the probability of obtaining an AIS for allele z that

did not originate from a shared inheritance from a nearby

ancestor. If we define m1 and m2 as the number of genotyped

members in the first and second heterotic group,

respectively, then we can estimate Pðai ¼ z; aj ¼ z; ai¼
6ibd

ajÞ
for both groups as

Pðai ¼ z; aj ¼ z; ai¼
6ibd

ajÞ ¼
Pm1

i¼1

Pm1þm2

j¼m1þ1 xði;zÞxðj;zÞ

4m1m2

; ð3Þ

where i and j now index over individuals from the first and

second heterotic group, respectively. Due to small sample

size effects, it is possible that the estimator for Pðai ¼
z; aj ¼ z; ai¼

6ibd
ajÞ[ Pðai ¼ z; aj ¼ zÞ in which case the

conditional probability xz should be set to 0. For rare

alleles P(ai = z, aj = z) might be 0 but in those cases the
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conditional probability is not needed for the calculation of

the coancestry. If we now arrange the conditional

probabilities xz from Eq. 1 for each allele z on the

diagonal of an all zero square matrix W of size p, we can

calculate f WAIS
ij for two individuals i and j belonging to the

same heterotic group as

f WAIS
ij ¼ 1

4l
xiWxj

0; ð4Þ

where the index WAIS is shorthand for weighted alikeness

in state (WAIS). The procedure thus far has assumed that i

and j are different genotypes belonging to the same

heterotic group. For the calculation of the symmetric

matrix AWAIS we also need to calculate f WAIS
ii for each of

the m individuals in the heterotic group. In this case, the

conditional probability of Eq. 1 underestimates the actual

ibd probability and this is even more the case when

genotype i has been inbred for gi generations as is common

in hybrid breeding. If we draw two alleles ai1 and ai2 at the

same locus of inbred line i, the conditional probability of

Eq. 1 should be corrected to

y0i;z ¼ P ai1¼
ibd

ai2 j ai1 ¼ z; ai2 ¼ z
� �

¼ 1

2
þ 1

2
1� 1

2

� �gi

þ 1

2

� �gi

xz

� �

¼ 1� 1

2

� �ðgiþ1Þ
" #

þ xz
1

2

� �ðgiþ1Þ
; ð5Þ

where xz is the entry in the diagonal of W corresponding to

allele z. If we define

yi;z ¼ y0i;z � xz

¼ 1� 1

2

� �ðgiþ1Þ
" #

1� xzð Þ;

we can see that yi,z can never be negative. In case all

genotyped individuals i in the heterotic group have the

same level of inbreeding g we can drop the index i in this

last equation and use the same value yz for all individuals.

For each of the m genotyped individuals in the heterotic

group we calculate

qi ¼
Xp

z¼1

x2
ði;zÞyi;z;

and arrange these values on the diagonal of an all zero

square matrix Q of size m. We can now calculate the WAIS

coancestry matrix as

AWAIS ¼ 1

4l
XWX0 þ Qð Þ: ð6Þ

The estimated matrix AWAIS is guaranteed to be psd as the

sum of two psd matrices XWX0 and Q is always psd. It is easy

to show that XWX0 is psd as for any m-sized vector v

v0XWX0v ¼ ðX0vÞ0WðX0vÞ ¼
Xp

z¼1

u2
z xz� 0;

where the last inequality follows from the fact that for all

alleles z, xz is always greater than or equal to zero. Also

matrix Q is psd as it is a diagonal matrix and all entries qi

are greater than or equal to zero.

Simulations

In population genetics, the statistical behaviour of marker-

based coancestry estimators is usually determined by

repeatedly simulating pairs of genotypes for which the true

relatedness belongs to a discrete number of predefined

classes (Ritland 1996; Lynch and Ritland 1999; Van de

Casteele et al. 2001; Milligan 2002). The mean, standard

error, bias and possibly other statistical features are

examined with loci number, allele number and allele fre-

quency distributions as variables. All of the previously

mentioned studies focus on natural populations and there-

fore assume linkage equilibrium throughout the genome.

However, Stich et al. (2005, 2007) show the presence of

significant linkage disequilibrium (LD) between SSR

marker loci of elite, European and US maize germplasm. In

a later study, Stich et al. (2007) demonstrate, by means of

simulation studies, that selection and drift are the major

forces generating this LD. As we want to study the

behaviour of different relatedness estimators under realistic

breeding circumstances, we must incorporate LD between

marker loci. Therefore, each simulation tracks selection by

means of several breeding cycles from open-pollinated

varieties (OPV) towards elite inbred lines.

The simulations used in this study follow the approach

of Stich et al. (2007) and therefore indirectly mimic the

breeding scheme of the University of Hohenheim. We

assume that the inbred lines are genotyped with 101

microsatellite loci, which are evenly distributed over the

maize genome according to a proprietary linkage map of

the breeding company RAGT R2n. We also generate 250

QTL loci of the selection trait (e.g. yield) which are ran-

domly positioned on the genetic map. The QTL effects and

resulting phenotypic values for line per se and testcross

performance were calculated according to Stich et al.

(2007). An important difference in the presented simula-

tions is the determination of the number of alleles and the

allele frequency distribution of all loci on the map. Stich

et al. (2007) use SSR allele frequencies obtained from five

Central European OPVs and copy these on the simulated

QTLs. Other studies assume identical allele frequency

distributions across loci (Ritland 1996; Lynch and Ritland

1999) or allow independent draws from a Dirichlet distri-

bution for each locus (Milligan 2002). We follow the latter

approach but also allow the number of alleles to differ
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between loci. We obtain the number of alleles for each

locus as an independent draw from a Poisson distribution

plus two, where the parameter k varies between 0 and 12.

This last upper bound was determined by observing little

change in the behaviour of the different CoC estimators at

higher values of k.

Each simulation starts by generating an initial base

population in Hardy–Weinberg equilibrium. Allele fre-

quencies of each locus are drawn from a Dirichlet

distribution with all parameters set to one. From this base

generation, we generate the allele frequencies of two sub-

populations which have diverged because of artificial

selection or geographical differentiation. We assume that on

average individuals within each subpopulation share more

ancestry compared to individuals belonging to different

subpopulations. Wright’s Fst value (Wright 1943, 1951) is a

measure for this population stratification and we assume

this value to be constant over all loci. The allele frequencies

in the subpopulations for locus k are drawn from a Dirichlet

distribution with parameters hpk where pk is the vector of

allele frequencies at locus k in the base population and

Fst ¼ 1=1þ h (Balding 2003). A total of 50 individuals are

randomly drawn from each of the two populations as an

entry point for the first breeding cycle. Each breeding cycle

consists of 6 generations of inbreeding and subsequent

phenotypical selection based on line per se or testcross

performance as described by Stich et al. (2007). This results

in 28 almost homozygous inbred lines within each heterotic

group (former subpopulation) which are either intercrossed

to produce 50 new genotypes for the next breeding cycle or

used to compare the different relatedness estimators. For

each allele in the breeding pool we keep track of the original

founder allele from which it originated. This allows us to

calculate the true pairwise CoC values between pairs of

inbred lines as an average of the actual ibd relationships

over all genotyped loci. We also calculate the pedigree-

based coefficient of coancestry (PED), AIS, WAIS and the

estimators described by Bernardo (1993) (BNO), Thompson

(1975) (MLE) and Loiselle et al. (1995) (LOI). Some BNO

values are negative while LOI admits to values smaller than

0 or greater than 1. These values are consequently truncated

to either 0 or 1 to obtain estimators within the biologically

meaningful parameter space.

Maize breeding data

Besides simulations we use the described relatedness esti-

mators to determine the CoC of a set of selected inbred

lines from the maize breeding programme of the private

company RAGT R2n. This data set, described in earlier

studies (Maenhout et al. 2007, 2008), contains 40,432

phenotypic measurements on 2,367 hybrids originating

from 92 Iodent and 105 Iowa Stiff Stalk Synthetic (ISSS)

lines. These hybrids are tested in 1280 multi-environment

trials (METs). A Met always takes place during one

growing season and is spread out over an average of 3.6

locations in Europe. As the total number of locations is

limited, it is quite common that the trials belonging to

different METs take place at the same location. Within one

location, the environmental conditions such as the level of

irrigation and fertilisation, or sowing and harvesting dates,

can vary between trials. As a consequence, one MET can

contain two trials at the same location, where each trial

receives a different treatment. In 67% of all trials over all

METs and locations, there is only one replication, while the

plots at the remaining trials are laid out in a randomised

complete block design. The data is severely unbalanced as,

on average, a hybrid is tested in only 2.6 METs. All

locations are however connected through the measure-

ments on 3,022 check varieties for which no parental

marker or pedigree information is available. We consider

all environmental factors as fixed, while the genotypical

components and G 9 E interactions are considered as

random effects. The full model for the mean of the vector

of phenotypical measurements y can be represented as

E½y� ¼ lþ XðgÞgþ XðlÞlþ Xðg:lÞg:lþ XðmÞm

þ Xðm:lÞm:lþ Xðm:l:tÞm:l:tþ Xðm:l:t:bÞm:l:t:b: ð7Þ

Here l represents the global phenotypical mean, while

g, l, m, t, b represent vectors containing the effects for

growing seasons, locations, METs, trials and blocks

respectively. The interaction terms in the model are

represented as a listing of the appropriate vector symbols,

separated by a dot. The X(*) matrices link the effects in

each vector to the phenotypical measurements in vector y.

The effects in vector m are nested within growing seasons,

but the METs have received a unique identifier and

therefore the notation g.m has been replaced by m. We

were not able to fit model terms containing treatment

effects as we have no information about the specific

treatment (irrigation, fertilisation,…) applied in each trial.

The main effects for year and location are removed from

the model for the mean as all their levels are confounded

with those of higher level interaction terms. The term X(m.l)

m.l was also dropped from Eq. 7 as 98% of the location/

growing season combinations contain only trials belonging

to separate METs. Most of the effects in vector m.l are

therefore confounded with the effects in the higher

interaction term m.l.t. Furthermore, the data contains

little or no information for the remaining effects in m.l,

as different treatments were applied in the few cases where

two trials of the same MET were placed within the same

location/growing season combination.

The main effects of the random part of the mixed model

can be represented as
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ZðcÞcþ ZðI1ÞI1 þ ZðI2ÞI2 þ ZðdÞd þ e: ð8Þ

Vector c contains the total genotypical effects for all

checks, and I1 and I2 are vectors containing GCA effects

for the inbred lines belonging to the ISSS and Iodent

heterotic groups, respectively. Vector d contains the SCA

effects for each of the 2,367 hybrids and e contains a

residual error for each phenotypical measurement in y. The

rows of the matrix Z(c) corresponding to measurements on

genotyped hybrids are set to 0, while all rows of the

remaining Z-matrices are set to 0 when their corresponding

entries in vector y pertain to check varieties.

Random G 9 E interaction terms are introduced in the

full model for the variance by pairwise interacting the first

four model terms in Eq. 8 with all the model terms in Eq. 7

except m.l and m.l.t.b. Due to a software restriction in the

maximum number of unknown variance parameters and the

prohibitively large computer memory requirements, the

possibly improved model fit of factor analytic and reduced

rank variance structures for the G 9 E interaction terms

can not be verified. For the same reasons, heterogeneous

residual variances can not be fitted. Akaike’s information

criterion is used to identify the important variance com-

ponents. At this stage, AIS is used to model the covariance

between the general and specific combining abilities of the

hybrids according to Stuber and Cockerham (1966). The

other random effects are assumed to have a diagonal

variance matrix. The described model selection procedure

is repeated for the traits grain yield (q/ha at 15% moisture),

grain moisture content and days until flowering. The logit

transformation is applied to the measurements of grain

moisture content as to reduce the skewness in the distri-

bution of the residuals. To avoid convergence problems

during REML iterations, these transformed measurements

are multiplied with a scaling factor of 100. For both yield

and grain moisture content, Akaike’s information criterion

indicates that the full model for the variance, containing 25

variance parameters, is to be preferred. For days until

flowering on the other hand, the three interactions between

the SCA effects and l, m and m.l.t are dropped from the

model for the variance. This reduces the number of

variance parameters for this trait to 22.

All variance components are estimated through REML

optimisation by means of the Average Information algo-

rithm as implemented in the software tool ASReml

(Gilmour et al. 2002). The model fit of the different CoC

matrices, obtained by applying each of the examined pro-

cedures, is determined by replacing them for the AIS-based

matrices in the covariance models of the vectors I1, I2 and

d in Eq. 8 and evaluating the resulting restricted log-like-

lihood at the end of the REML iteration. Both BNO and

LOI produce CoC values that are outside the biologically

meaningful parameter space (0 B fij B 1 for all genotypes i

and j) and these values are therefore truncated at the

boundaries. For both heterotic groups the MLE and the

bounded LOI numerator matrices are non-psd and therefore

need bending towards the nearest psd matrix.

Bending procedures

The first examined bending procedure applies a spectral

decomposition of the non-psd matrix and replaces all

negative eigenvalues with a small positive value as

described in Sørensen et al. (2002) and Jorjani et al.

(2003). This procedure does however not constrain the

elements of the bended matrix within the unit interval such

that new boundary infringements might arise during

bending. To enforce these boundary constraints we

implemented an MCMC procedure, inspired by FLBEND

(Henshall and Meyer 2002), to transform non-psd coan-

cestry matrices towards the closest psd matrix within the

parameter space. The idea behind FLBEND is to generate a

symmetric matrix B by means of an iterative Monte Carlo

procedure such that the distance between the psd matrix

product BB0 and the non-psd input matrix A is minimised.

Perturbations in B that increase this distance are accepted

at reduced probability. Our modified algorithm rejects

alterations in B that allow the elements of BB0 to stray

outside the unit interval. To allow for a faster convergence

under this restricted setting, we continuously update the

variance of new perturbations by means of a Metropolis-

Hastings step. We also allow the matrix B to be non-

symmetrical as this results in a better approximation of the

input matrix, at the cost of a higher computational demand.

Results

Simulated breeding populations

The first breeding cycle in each simulation produces 28

unrelated inbred lines. The selective pairwise mating of

these inbred lines produces 50 hybrids, which represent the

starting point for the next selection cycle. At the end of

each breeding cycle we can calculate the actual CoC

between all pairs of inbred lines by averaging over the true

ibd relationships at the SSR marker loci. Figure 1 depicts

this average CoC at each breeding cycle.

At the end of each breeding cycle, only the best per-

forming inbred lines are retained, regardless of their

pairwise relatedness. This behaviour mimics a real hybrid

breeding programme where decisions are based on phe-

notypical performance data. Unfortunately this implies that

it is not possible to control the pairwise CoC between

inbred lines at each breeding cycle which would allow to

quantify the standard error of the different estimators at
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predefined levels of coancestry (parent-offspring, half-

sibs,…). Instead, we determine for the 378 pairwise com-

binations of the 28 selected inbred lines within a heterotic

group the actual CoC based on the average ibd relation-

ships at the SSR loci. This allows us to determine the

average bias and root mean squared error (RMSE) of each

CoC estimator. Figure 2 visualises for each estimator this

RMSE at different values of the Fst between the initial

OPVs and different values of k. The presented RMSE

values are averaged over 100 independent iterations of the

simulation routine.

The AIS, WAIS and PED estimators are guaranteed to

produce a psd coancestry matrix, while the other three

estimators (BNO, MLE and LOI) are not. For every CoC

estimator the proportion of non-psd numerator relationship

matrices was determined by means of an eigenvalue anal-

ysis. During simulations, BNO never resulted in a non-psd

ABNO matrix despite the fact that several small truncations

were necessary to confine the estimator within the bio-

logically meaningful parameter space. MLE and LOI are

more likely to produce a non-psd coancestry matrix as can

be seen from Fig. 3.

Maize breeding data

AIS, PED, MLE and WAIS all produce CoC estimators

within the unit interval. BNO on the other hand can pro-

duce negative CoC values and the same holds for LOI

which also allows to obtain CoC values greater than one.

Figure 4 shows the range of pairwise CoC values between

genotypes belonging to the same heterotic group for all

examined estimation procedures.

The covariance structure of the GCA and SCA effects of

Eq. 8 is modelled by means of the six examined coancestry

estimators. We can compare the goodness-of-fit of these

coancestry estimators by means of the restricted log-like-

lihood at the final REML iteration, as the fixed effects

structure and the number of estimated variance components

for each model are constant. To allow for a fair comparison

between estimators we restrict all CoC values to lie within

the unit interval. This decision only has a minor effect on

the model fit as the difference in restricted log-likelihoods

between the bounded and unbounded variants of BNO and

LOI is negligible for all three traits under study. MLE is

bounded by nature but results in non-psd CoC matrices for

both the Iodent and the ISSS heterotic groups and so does

the bounded LOI variant. The MCMC bending procedure

results in a smaller distance between the original non-psd

matrix and the bended output matrix compared to the

spectral decomposition approach. For the MCMC bending

procedure the maximum element-wise average distance is

only 0.00075, while it is 0.0015 for the spectral decom-

position approach. This superiority is however barely

reflected in an improved model fit as the restricted log-

likelihoods of the LOI and MLE CoC matrices bended with

the MCMC procedure are usually identical or slightly

higher than those bended with the spectral decomposition

approach. Table 1 gives an overview of the restricted log-

likelihoods for each of the examined CoC estimators and

for each of the three traits under study.

Discussion

The CoC is often used to model the covariance between

genetic components of genotypes under selection, despite

the inherent conflicts with the underlying quantitative

genetic theory. In hybrid breeding programmes and certain

association studies the genotypes at hand are highly

selected inbred lines with little or no information con-

cerning their selection history. Analysing phenotypical data

originating from such inbred lines or their pairwise matings

by means of a linear mixed model which uses a CoC

estimator to model the covariance between GCA or SCA

components, should be considered as an approximation,

since the resulting variance components and BLUPs are

biased. Nevertheless, good results have been obtained in

practice using different CoC estimators based on pedigree

or molecular marker information.

In this paper we present a psd, codominant marker-based

relatedness estimator called the weighted alikeness in state

or WAIS estimator. This estimator is only applicable in the

specific case that a reference set of genotyped individuals,

unrelated to the genotypes in the sample, is available. As

hybrid breeders make extensive use of unrelated heterotic

groups, this estimator is particularly suited for this type of

selection. It should be clear that WAIS is not claimed to be
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assumption free as it for example relies on gametic phase

equilibrium. This assumption is surely not met in advanced

breeding pools, so we study the behaviour of WAIS and

other CoC estimators under a typical hybrid breeding

selection scheme by means of simulations and actual

breeding data.

Marker-based estimators

Bernardo (1993) uses the observed marker similarities

between unrelated lines to correct the AIS-based estimator

for lines belonging to the same heterotic group. Besides the

often violated assumption of gametic-phase equilibrium

between loci, there is also the problem of obtaining negative

values for BNO when the correction factor exceeds AIS.

Thompson (1975) demonstrates how the pairwise rela-

tionship between non-inbred individuals can be estimated

by means of a likelihood function that incorporates the

three possible identity by descent probabilities (Jacquard

1974). Milligan (2002) compares the behaviour of this

estimator to 5 prominent, non-likelihood estimators

(Queller and Goodnight 1989; Li et al. 1993; Ritland 1996;

Lynch and Ritland 1999; Wang 2002). He concludes that

under all simulated scenarios, MLE exhibits a lower vari-

ation compared to the other estimators. However, this

reduction in standard error comes at a price, as the likeli-

hood estimator shows considerably more bias, especially at

the boundary of the parameter space. A second advantage

lies in the fact that the likelihood maximisation procedure

is constrained to produce biologically meaningful results

ð0�MLE� 1Þ; but this property could in fact be enforced

on the other estimators as well, again at the cost of

increasing the bias. Nevertheless, we consider the MLE to

be the most appropriate candidate for use in breeding pools

as it explicitly handles inbred individuals. Other implicit

assumptions like linkage equilibrium between marker loci

and exact knowledge of population allele frequencies are

most likely to be violated when the fingerprinted genotypes

are all inbred lines but this is the case for all other esti-

mators as well. Anderson and Weir (2007) extended the

maximum likelihood approach for the case where the

examined genotypes belong to subpopulations of a popu-

lation with known allele frequencies. However, we did not

adopt this approach as its resulting coancestry measures

refer to the ancestral population, while all other examined

estimators refer to the subpopulation itself.

The problem of finding the most likely ibd relationship

between two genotypes can be formulated as the maximi-

sation of a function over a vector D containing nine single-

locus, identity by descent modes (Jacquard 1974; Thompson

1975). As the simulations in Milligan (2002) assume large,

non-inbred populations, the parameter space can be reduced
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Table 1 Restricted log-likelihoods for each of the six coancestry

estimators that were used to model the covariance for GCA and SCA

effects in Eq. 8 for the traits yield, grain moisture content and days

until flowering

Yield Moisture % Flowering

PED -222740.1 (4) -194696.6 (1) -55339.6 (1)

AIS -222734.8 (2) -194710.8 (2) -55343.8 (2)

BNO -222734.8 (1) -194712.9 (3) -55344.1 (3)

WAIS -222739.2 (3) -194715.3 (4) -55347.7 (4)

MLE -222743.2 (6) -194716.2 (5) -55357.0 (5)

LOI -222741.0 (5) -194725.6 (6) -55361.9 (6)

The number between brackets represents the relative ordering of the

estimators when sorted according to decreasing restricted likelihood.

BNO and LOI values were bounded within the unit interval. MLE and

the bounded LOI matrices were bended towards the closest psd matrix

using the MCMC algorithm
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to having 2 dimensions. Hepler (2005) explores the possi-

bility of inbred individuals which expands the parameter

space to eight dimensions. Both Milligan (2002) and Hepler

(2005) use the downhill simplex method (Nelder and Mead

1965), a heuristic optimisation technique, because an alge-

braic solution of the maximisation problem is not feasible.

The original version of this heuristic neither allows the

incorporation of the boundary constraints ð0�Di� 1Þ nor

the linear constraint
P9

i¼1 Di ¼ 1
� �

Hepler (2005) intro-

duces these constraints by rejecting solutions outside the

parameter space during the optimisation process. This

results in numerous lost iterations, especially when certain

values of D are near the boundary of the parameter space. To

allow for simulations to be performed in an acceptable time

frame, we use a quasi-Newton nonlinear interior-point

method (Meza et al. 2007) for the maximisation of LðDÞ:
This approach reduces the needed processor time per

genotype pair drastically, while the resulting estimators of D
are always nearly identical compared to those of the con-

strained simplex algorithm. The resulting matrix AMLE,

containing all pairwise estimates of MLE, is not guaranteed

to be psd which limits its use in a mixed model setting. If the

AMLE happens to be non-psd, the nearest psd matrix should

be used instead.

Loiselle et al. (1995) describe a marker-based coancestry

estimator which quantifies the correlation in allele fre-

quencies between two individuals belonging to a population

in Hardy-Weinberg equilibrium. Despite the obvious vio-

lations of underlying theoretical assumptions, this marker-

based estimator is sometimes used to model the covariance

between genotypes originating from breeding programmes

(Yu et al. 2006; Zhang et al. 2007; Casa et al. 2008). LOI is

not guaranteed to lie within the parameter space so trunca-

tions are often necessary at the boundaries. The resulting

coancestry matrix ALOI is not guaranteed to be psd.

Simulations

The simulated selection scheme follows the maize breeding

programme of the University of Hohenheim (Stich et al.

2007). Each breeding cycle consists of 6 generations of

inbreeding and selection after which the best performing

inbred lines are mated to provide the initial population for

the next breeding cycle. The actual CoC, obtained as an

average over SSR loci, gradually increases as the number

of subsequent breeding cycles rises. The trend observed in

Fig. 1 is independent from the initial parameter selection

(Fst, k), which indicates that the number of breeding cycles

can be used as an indirect measure for the average relat-

edness within the heterotic groups.

From Fig. 2 we can see that the pedigree-based esti-

mator outperforms all marker-based estimators by

producing the lowest RMSE under all parameter settings.

The bias introduced by unequal parental contributions as a

consequence of the selection process seems to be negligible

compared to the bias of the marker-based estimators. The

advantage of the pedigree-based estimator might not be so

apparent under practical breeding circumstances, as

detailed and accurate pedigree records, tracing back to the

initial OPVs, are usually not available. Looking at the

marker-based estimators we see that the behaviour of MLE

and that of LOI are nearly identical under all simulated

scenarios. The performance of these estimators deteriorates

as the number of breeding cycles increases which is

probably caused by the increasing deviations from popu-

lation genetics assumptions on which they rely. AIS shows

a rather reversed picture as it tends to become more

accurate as the number of breeding cycles increases. The

overestimation of AIS at low levels of selection is more

pronounced when the expected number of distinct alleles at

each locus (k) is small or the differentiation between the

populations from which the heterotic groups are developed

(Fst) is large. The influence of the value of the Fst is rather

surprising as AIS makes no use of a reference population.

A possible explanation might lie in the constraints that are

imposed on the allele frequencies as a consequence of

fixing the Fst value. This might have the same effect as

lowering the effective number of distinct alleles at each

locus.

The RMSE of WAIS and BNO is usually at a consid-

erably lower level compared to the other marker-based

estimators. When k = 0, which is equivalent to fixing the

number of distinct alleles of each SSR or QTL locus at 2,

WAIS has a higher RMSE compared to BNO. This rather

unrealistic scenario allows AIS to outperform WAIS when

the number of breeding cycles is high. As soon as k
increases to a more realistic setting, WAIS outperforms

AIS and can compete with BNO. Ho et al. (2005) estimate

the Fst between Corn Belt dent populations to be 0.142

which is somewhat similar to the 0.15 found earlier by

Labate et al. (2003). At this level of differentiation WAIS

and BNO perform at a comparable level, although WAIS

performs slightly better when allelic diversity is high.

WAIS also outperforms BNO when the Fst value increases,

except when k is small and the number of breeding cycles

is high.

WAIS is specifically designed to guarantee a psd

coancestry matrix. This property is necessary when this

matrix is used to model the covariance between genetic

components in a linear mixed model. BNO, despite not

being a psd estimator, always produced a psd coancestry

matrix for all simulated populations and the real hybrid

maize data set. Several truncations towards 0 were neces-

sary but these were small in absolute value. These

arguments allow to conclude that BNO is a stable estimator
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which produces natural coancestry measures under variable

circumstances. This cannot be said for MLE and LOI

which both produced non-psd coancestry matrices for a

rather large proportion of the simulated heterotic groups.

This proportion is highly dependent on the number of

distinct alleles at each locus where a value of k of 0 and 8

consecutive breeding cycles results in a very high proba-

bility of obtaining a non-psd matrix. LOI performs slightly

worse than MLE, but both estimators generally exhibit the

same increase in proportion of non-psd matrices when the

allelic diversity decreases.

Maize breeding data

Figure 4 shows that BNO and LOI both produce negative

CoC estimates and that LOI also allows the estimators to

become greater than one. The infractions of BNO on the

lower bound are rather limited in frequency as well as in

size as only 37 of all 9,843 estimates are smaller than zero

with a mean negative deviation of 0.04. Truncation of BNO

at the lower bound therefore has little impact on the model

fit. LOI on the other hand, ranges from -0.41 to 1.83 and

only 43% of the estimated CoC values fall within the

biologically meaningful parameter space. Truncation of

LOI at the boundaries therefore cripples the distribution of

CoC values as more than half of the estimates are set to 0

or 1. The bounded LOI distribution looks very similar to

that of MLE, the other estimator from population genetics.

This is to be expected as MLE forces all estimates to lie

within the unit interval by means of the constrained opti-

misation algorithm. The other estimators produce more

natural looking distributions where AIS is generally at a

higher level than PED and both BNO and WAIS take more

intermediate positions. The unbounded BNO and LOI

result in psd CoC matrices for both the ISSS and Iodent

heterotic groups while MLE produces non-psd matrices.

After bounding of BNO and LOI only LOI results in non-

psd CoC matrices for both heterotic groups such that

bending needs to be applied.

For the non-psd matrices produced by MLE and the

bounded variant of LOI, two matrix bending procedures

were examined. The spectral decomposition approach is

computationally quite fast but does not allow to constrain

the elements within the unit interval. The application of

this bending procedure to the bounded LOI estimator

results for example in 2,770 new boundary infringements,

though it should be noted that these are rather small in

absolute value. The MCMC procedure is computationally

quite demanding but allows to constrain all CoC values

within the aforementioned range and produces a psd matrix

that is closer to the original input matrix than the matrix

resulting from the spectral decomposition approach. This

difference between both bending procedures is however

negligible when comparing restricted log-likelihoods of

linear mixed models in which the bended CoC matrices are

used to model covariances between random GCA and SCA

effects.

In Table 1 we can see that PED results in the highest

restricted log-likelihood at the end of the REML iterations

for the traits grain moisture content and days until flow-

ering, while BNO, AIS and WAIS outperform the

pedigree estimator for the trait yield. If we focus on the

marker-based estimators, we see that the uncorrected AIS

results in the highest restricted log-likelihood for the traits

grain moisture content and days until flowering while for

yield the difference with BNO is negligible. Although

surprising at first, this behaviour of AIS is consistent with

the simulations as it was shown that the RMSE of AIS

decreases to that of BNO and WAIS when the number of

consecutive breeding cycles is high. Taking into account

that AIS always results in a psd coancestry matrix, this

estimator deserves a revaluation when applied to highly

selected breeding material. When summing over rank

scores, BNO takes third position while WAIS takes

fourth. Constraining the resulting coancestry matrix to be

psd comes at the price of a slightly reduced model fit.

MLE and LOI, both originating from population genetics,

give the lowest log-likelihoods for all three traits under

study.

Results from this study indicate that the pedigree-based

CoC estimator is superior to the available marker-based

alternatives when accurate and complete pedigree infor-

mation is available for a set of highly selected inbred lines.

Comparisons between marker-based CoC estimation pro-

cedures, for the specific case that the inbred lines are

subdivided in unrelated heterotic groups, indicate that

procedures from population genetics like MLE or LOI

should generally be avoided as a considerable deviation

from the actual ibd relationship can be observed when the

inbred lines have a long breeding history. Results also

indicate that in this specific case, the observed allele

identities need little correction and therefore AIS results in

a good approximation of the true CoC. However, if the

breeding history is not that long or unknown, BNO and

WAIS should be used. BNO generally results in a slightly

better model fit, but when the psd property of the resulting

CoC matrix needs to be guaranteed, for example when used

in a linear mixed model for breeding value estimation or an

association study, the new relatedness estimator WAIS

should be preferred.
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